page 1

This page intentionally left blank. Go to next page.

QUESTION 9 (8 points)

- 9. Explain each of the following observations in terms of the electronic structure and/or bonding of the compounds involved.
 - (a) At ordinary conditions, HF (normal boiling point = 20°C) is a liquid, whereas HCl (normal boiling point = -114°C) is a gas.
 - (b) Molecules of AsF_3 are polar, whereas molecules of AsF_5 are nonpolar.
 - (c) The N-O bonds in the NO_2^- ion are equal in length, whereas they are unequal in HNO_2 .
 - (d) For sulfur, the fluorides SF_2 , SF_4 , and SF_6 are known to exist, whereas for oxygen only OF_2 is known to exist.

Scoring Guide

1996

(a)	Hydrogen bonding (or dipole -dipole attraction) in HF is greater than it is in HCl	1 point 1 point
10	(Note: only 1 point earned if simply stated that HF has greater intermolecular forces than HCl)	
(b)	AsF ₃ has a trigonal pyramid shape and bond dipoles do <u>NOT</u> cancel (or, asymmetric molecule)	1 point
	AsF ₅ has a trigonal bipyramid shape and bond dipoles cancel (or, symmetric molecule)	1 point
	(Notes: explanation must refer to shape in order to earn point; 1 point earned if <u>only</u> correct Lewis structures are given)	
(c)	NO_2^- has resonance structures	1 point
	$[:\ddot{\mathbf{O}} = \ddot{\mathbf{N}} - \ddot{\mathbf{O}}:]^{-1} \leftrightarrow [:\ddot{\mathbf{O}} - \ddot{\mathbf{N}} = \ddot{\mathbf{O}}:]^{-1}$	
	HNO ₂ has <u>no</u> resonance structures	
a — -	$H-\ddot{O}-\ddot{N}=\ddot{O}$:	1 point
OR,	one N-O single bond, one N=O double bond	
	(Note: 1 point earned if <u>only</u> correct Lewis structures, including resonance for NO_2^- , are given)	
(d)	Sulfur uses d orbitals (or expanded octet),	1 point
(u)	oxygen has no d orbitals in its valence shell	1 point
OR,		2 points

42

Page 2

AP[®] CHEMISTRY 1999 SCORING GUIDELINES

Question 8

8 points

(a) (i)

- One point earned for each Lewis electron-dot structure
- Indication of lone pairs of electrons are required on each structure
- Resonance forms of CO_3^{2-} are not required
- (ii) In CO₂, the C–O interactions are double bonds, **OR**, in CO_3^{2-} the C–O interactions are resonance forms (or figures below.) 1 pt

The carbon-oxygen bond length is greater in the resonance forms than in the double bonds. 1 pt

- 1^{st} point earned for indicating double bonds are present in CO₂ OR resonance occurs in CO₃²⁻
- 2nd point earned for **BOTH** of the above **AND** indicating the relative lengths of the bond types
- (b) (i)

2 pts $|\overline{F}|$ $|\overline{F}| - C - \overline{F}|$ $|\overline{F}| - S - \overline{F}|$

- One point earned for each Lewis electron-dot structure
- Lone pairs of electrons are required on each structure

2 pts

Copyright © 2001 by College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, and the acorn logo are registered trademarks of the College Entrance Examination Board.

AP[®] CHEMISTRY 1999 SCORING GUIDELINES

Question 8 (cont.)

(ii) CF₄ has a tetrahedral geometry, so the bond dipoles cancel, leading to a nonpolar molecule. 1 pt

With five pairs of electrons around the central S atom, SF_4 exhibits a trigonal bipyramidal **1** *pt* electronic geometry, with the lone pair of electrons. In this configuration, the bond dipoles do not cancel, and the molecule is polar.

• One point earned for each molecule for proper geometry and explanation

Copyright © 2001 by College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, and the acorn logo are registered trademarks of the College Entrance Examination Board.

AP[®] CHEMISTRY 2002 SCORING GUIDELINES (Form B)

Question 6

10 points

Using principles of chemical bonding and molecular geometry, explain each of the following observations. Lewis electron-dot diagrams and sketches of molecules may be helpful as part of your explanations. For each observation, your answer must include references to <u>both</u> substances.

(a) The bonds in nitrite ion, NO_2^{-} , are shorter than the bonds in nitrate ion, NO_3^{-} .

(b) The CH_2F_2 molecule is polar, whereas the CF_4 molecule is not.

The molecular geometry in both CH_2F_2 and CF_4 is tetrahedral (or the same). The C-F bond is polar. In CF_4 ,	1 point earned for discussing the similarity in molecular geometry
the molecular geometry arranges the C-F dipoles so that they cancel out and the molecule is nonpolar. The C-H bond is less polar than the C-F bond. The two C-H dipoles do not cancel the two C-F dipoles in CH_2F_2 .	1 point earned for discussing the relationship between molecular geometry and the C-H and C-F bond dipoles

Copyright © 2002 by College Entrance Examination Board. All rights reserved. Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.

AP[®] CHEMISTRY 2002 SCORING GUIDELINES (Form B)

Question 6 (cont'd.)

(c) The atoms in a C_2H_4 molecule are located in a single plane, whereas those in a C_2H_6 molecule are not.

The carbon atoms in C_2H_4 have a molecular	
geometry around each carbon atom that is trigonal planar (AX_3) , so all six atoms are in the same	1 point earned for the bonding of the carbon atoms
plane. The carbon atoms in C_2H_6 have a molecular geometry that is tetrahedral (AX ₄), so the atoms are	1 point earned for the structure
not all in the same plane.	
OR	
The carbon-carbon double bond in C_2H_4 results in a	
planar molecule whereas the carbon-carbon single	
bond in C_2H_6 results in a non-planar (tetrahedral)	
site at each carbon atom.	

(d) The shape of a PF_5 molecule differs from that of an IF_5 molecule.

In PF_5 , the molecular geometry is trigonal	
bipyramidal because the phosphorus atom has five bonding pairs of electrons and no lone pairs of electrons. IF ₅ has square pyramdal molecular geometry. The central iodine atom has five bonding pairs of electrons and one lone pair of electrons. The presence of the additional lone pair of electrons on the central iodine atom means the molecular geometry is different.	1 point earned for discussing the difference made by the lone pair of electrons in IF_5 and how it affects the geometry of the two molecules

(e) $HClO_3$ is a stronger acid than HClO.

According to the formula for HOCl and HOClO ₂ , there are two	
additional terminal, electronegative oxygen atoms attached to the	1 point earned for
central chlorine atom. These additional terminal oxygen atom	discussing the
stabilize the negative charge on the anion ClO_3^- compared to	importance of the electronegativity of
ClO ⁻ . The result is to reduce the electrostatic attraction between	the terminal oxygen
the H ⁺ and ClO _{X^-} .	atoms in the two
OR	structures and/or
The two additional terminal electronegative O atoms bonded to the	the enhanced
chlorine atom of ClO_3^- pull electron density away from the central	stability of the
chlorine atom. The net result is to weaken the H-O bond. Since	chlorate vs. the
HOCl has no additional terminal O atoms, its H-O bond is	hypochlorite ion
stronger. The weaker the H-O bond, the stronger the acid.	

Copyright © 2002 by College Entrance Examination Board. All rights reserved. Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.

AP[®] CHEMISTRY 2003 SCORING GUIDELINES

Question 8

Compound Name	Compound Formula	ΔH_{vap}^{o} (kJ mol ⁻¹)
Propane	CH ₃ CH ₂ CH ₃	19.0
Propanone	CH ₃ COCH ₃	32.0
1-propanol	CH ₃ CH ₂ CH ₂ OH	47.3

- 8. Using the information in the table above, answer the following questions about organic compounds.
 - (a) For propanone,
 - (i) draw the complete structural formula (showing all atoms and bonds);

(ii) predict the approximate carbon-to-carbon bond angle.

The $C-C-C$ bond angle is 120°	1 point for bond angle
---	------------------------

- (b) For each pair of compounds below, explain why they do not have the same value for their standard heat of vaporization, ΔH°_{vap} . (You must include specific information about both compounds in each pair.)
 - (i) Propane and propanone

The intermolecular attractive forces in propane are dispersion forces only. The IMFs in propanone are dispersion and dipole-dipole. Since the intermolecular attractive forces differ in the two substances, the enthalpy of vaporization will differ.	1 point for correctly identifying the IMFs for each substance
--	---

Copyright © 2003 by College Entrance Examination Board. All rights reserved. Available at apcentral.collegeboard.com.

20

AP[®] CHEMISTRY 2003 SCORING GUIDELINES

Question 8 (cont'd.)

(ii) Propanone and 1-propanol

(c) Draw the complete structural formula for an isomer of the molecule you drew in part (a) (i).

(d) Given the structural formula for propyne below,

(i) indicate the hybridization of the carbon atom indicated by the arrow in the structure above;

sp hybridization	1 point for correct hybridization
------------------	-----------------------------------

(ii) indicate the total number of sigma (σ) bonds and the total number of pi (π) bonds in the molecule.

6 sigma bonds	1 point for correct number of sigma bonds
2 pi bonds	1 point for correct number of pi bonds

Copyright © 2003 by College Entrance Examination Board. All rights reserved. Available at apcentral.collegeboard.com.

21

Page 8