\qquad Name \qquad Per \qquad

Mole Conversion Problems

Complete the following practice problems for mole conversion. Show your work and units!

1. How many moles are in 72.9 g of HCl ? Molar mass $\mathrm{HCl}=36.46 \frac{\mathrm{~g}}{\mathrm{~mol}}$

$$
\frac{72.9 \mathrm{~g}}{36.46 \frac{\mathrm{~g}}{\mathrm{~mol}} \quad=\quad 1.999 \mathrm{~mol}}
$$

2. How many moles are in $79.85 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$? Molar mass $=159.7 \frac{\mathrm{~g}}{\mathrm{~mol}}$

$$
\frac{79.85 \mathrm{~g}}{159.7 \frac{\mathrm{~g}}{\mathrm{~mol}}} \quad=0.5 \mathrm{~mol}
$$

3. How many molecules are in 720 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$? \quad Molar mass $=180.18 \frac{\mathrm{~g}}{\mathrm{~mol}}$

720 g
$3.996 \mathrm{~mol} \times\left(6.02 \times 10^{23} \frac{\text { particles }}{\mathrm{mol}}\right)=2.406 \times 10^{24}$ particles
$180.18 \frac{\mathrm{~g}}{\mathrm{~mol}}=3.996 \mathrm{~mol}$
4. How many grams are in 3.5 mol of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$? \quad Molar mass $=310.18 \frac{\mathrm{~g}}{\mathrm{~mol}}$

$$
310.18 \frac{\mathrm{~g}}{\mathrm{~mol}} \times 3.5 \mathrm{~mol}=1085.63 \mathrm{~g}
$$

5. How many molecules are in 8550 g of SO_{2} ? \quad Molar mass $=64.07 \frac{\mathrm{~g}}{\mathrm{~mol}}$

$$
8550 \mathrm{~g} \quad 133.45 \mathrm{~mol} \times\left(6.02 \times 10^{23} \frac{\text { particles }}{\mathrm{mol}}\right)=8.03 \times 10^{25} \text { particles }
$$

$$
64.07 \frac{\mathrm{~g}}{\mathrm{~mol}}=133.45 \mathrm{~mol}
$$

6. How many grams are in 3.01×10^{24} molecules of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$? \quad Molar mass $=132.17 \frac{\mathrm{~g}}{\mathrm{~mol}}$
$\underline{3.01 \times 10^{24} \text { particles } \quad 5 \mathrm{~mol} \times 132.17 \frac{\mathrm{~g}}{\mathrm{~mol}}=660.85 \mathrm{~g}, ~}$
$6.02 \times 10^{23} \frac{\text { particles }}{m o l}=5 \mathrm{~mol}$
7. How many molecules are in 85 g of AgNO_{3} ? \quad Molar mass $=169.88 \frac{\mathrm{~g}}{\mathrm{~mol}}$

85 g
$0.5 \mathrm{~mol} \times\left(6.02 \times 10^{23} \frac{\text { particles }}{\mathrm{mol}}\right)=3.01 \times 10^{23}$
$169.88 \frac{\mathrm{~g}}{\mathrm{~mol}} \quad=0.5 \mathrm{~mol}$
8. How many grams are in 1.204×10^{24} molecules of $\mathrm{CH}_{3} \mathrm{COOH}$? Molar mass $=60.06 \frac{\mathrm{~g}}{\mathrm{~mol}}$
1.204×10^{24} particles $=2.0 \mathrm{~mol} \quad 2.0 \mathrm{~mol} \times 60.06 \frac{\mathrm{~g}}{\mathrm{~mol}}=120.12 \mathrm{~g}$
$6.02 \times 10^{23} \frac{\text { particles }}{\mathrm{mol}}$
\qquad Name \qquad Per \qquad
9. Convert 86.84 g of LiBr to moles: Molar mass $=86.84 \frac{\mathrm{~g}}{\mathrm{~mol}}$
$86.84 \mathrm{~g}=1.0 \mathrm{~mol}$
$86.84 \frac{\mathrm{~g}}{\mathrm{~mol}}$
10. Convert 8.045 g of $\mathrm{H}_{2} \mathrm{CO}_{3}$ to moles: \quad Molar mass $=62.03 \frac{\mathrm{~g}}{\mathrm{~mol}}$
$8.045 \mathrm{~g}=0.1297 \mathrm{~mol}$
$62.03 \frac{\mathrm{~g}}{\mathrm{~mol}}$
11. How many grams of lithium are there in 3.45 moles? Molar mass $=6.94 \frac{\mathrm{~g}}{\mathrm{~mol}}$
$6.94 \frac{\mathrm{~g}}{\mathrm{~mol}} \times 3.45 \mathrm{~mol}=23.943 \mathrm{~g}$
12. How many moles of nitrogen are there in 4.3×10^{23} molecules?
$\underline{4.3 \times 10^{23} \text { particles }=.714 \mathrm{~mol}}$
$6.02 \times 10^{23} \frac{\text { particles }}{\mathrm{mol}}$
13. How many cadmium atoms are there in 6.57×10^{3} moles?
6.57×10^{3} moles $\times\left(6.02 \times 10^{23} \frac{\text { particles }}{m o l}\right)=3.955 \times 10^{27}$ particles
14. How many grams of SO_{2} are 4.5×10^{24} molecules? Molar mass $=64.07 \frac{\mathrm{~g}}{\mathrm{~mol}}$
$\underline{4.5 \times 10^{24} \text { particles } \quad=7.475 \mathrm{~mol} \quad 7.475 \mathrm{~mol} \times 64.07 \frac{\mathrm{~g}}{\mathrm{~mol}}=478.93 \mathrm{~g}, 0}$
$6.02 \times 10^{23} \frac{\text { particles }}{\mathrm{mol}}$
15. How many copper atoms are in 5.6 mole of $\mathrm{Cu}_{2} \mathrm{O}_{3}$?
$5.6 \mathrm{~mol} \times\left(6.02 \times 10^{23} \frac{\text { particles }}{\mathrm{mol}}\right)=3.37 \times 10^{24}$ particles
16. How many grams of sulfur are in 3.45×10^{22} molecules of SO_{2} ? Molar mass Sulfur $=32.07 \frac{\mathrm{~g}}{\mathrm{~mol}}$

$6.02 \times 10^{23} \frac{\text { particles }}{\mathrm{mol}}$

