Mole Conversion Problems

Complete the following practice problems for mole conversion. Show your work and units!
1. How many moles are in 72.9 g of HCl? Molar mass HCl = $36.46 \frac{g}{mol}$
72.9g
$36.46 \frac{g}{mol} = 1.999 \text{ mol}$
2. How many moles are in 79.85 g Fe ₂ O ₃ ? Molar mass = $159.7 \frac{g}{mol}$
$\frac{79.85g}{159.7\frac{g}{mol}} = \frac{0.5 \text{ mol}}{159.7\frac{g}{mol}}$
3. How many molecules are in 720 g of $C_6H_{12}O_6$? Molar mass = $180.18 \frac{g}{mol}$
$\frac{720g}{180.18\frac{g}{mol}} = 3.996 \text{ mol}$ $3.996 \text{ mol x } (6.02 \text{ x } 10^{23} \frac{particles}{mol}) = \frac{2.406 \text{ x } 10^{24} \text{ particles}}{1000 \text{ mol}}$
4. How many grams are in 3.5 mol of Ca ₃ (PO ₄) ₂ ? Molar mass = $310.18 \frac{g}{mol}$
$310.18 \frac{g}{mol} \times 3.5 \text{ mol} = \frac{1085.63 \text{ g}}{1085.63 \text{ g}}$
5. How many molecules are in 8550g of SO ₂ ? Molar mass = $64.07 \frac{g}{mol}$
$\frac{8550g}{64.07\frac{g}{mol}} = 133.45 \text{ mol} \qquad 133.45 \text{ mol } x (6.02 \text{ x } 10^{23} \frac{particles}{mol}) = \frac{8.03 \text{ x } 10^{25} \text{ particles}}{mol}$
6. How many grams are in 3.01×10^{24} molecules of $(NH_4)_2SO_4$? Molar mass = $132.17 \frac{g}{mol}$
$\frac{3.01 \times 10^{24} \text{ particles}}{6.02 \times 10^{23} \frac{\text{particles}}{\text{mol}}} = 5 \text{ mol}$ 5 mol x 132.17 $\frac{g}{\text{mol}}$ = 660.85 g
7. How many molecules are in 85 g of AgNO ₃ ? Molar mass = $169.88 \frac{g}{mol}$
$\frac{85g}{169.88\frac{g}{mol}} = 0.5 \text{ mol} \qquad 0.5 \text{ mol x } (6.02 \text{ x } 10^{23} \frac{particles}{mol}) = \frac{3.01 \text{ x } 10^{23}}{mol}$
8. How many grams are in 1.204 × 10 ²⁴ molecules of CH ₃ COOH? Molar mass = $60.06 \frac{g}{100}$
1.204×10^{24} particles = 2.0 mol 2.0 mol x 60.06 $\frac{g}{120.12}$ = 120.12 g
$6.02 \times 10^{23} \frac{particles}{mol}$

9. Convert 86.84 g of LiBr to moles: Molar mass = $86.84 \frac{g}{mol}$

10. Convert 8.045 g of H₂CO₃ to moles: Molar mass = $62.03 \frac{g}{mol}$ $\frac{8.045 \text{ g}}{62.03 \frac{g}{mol}}$

11. How many grams of lithium are there in 3.45 moles? Molar mass = $6.94 \frac{g}{mol}$ $6.94 \frac{g}{mol} \times 3.45$ mol = 23.943 g

12. How many moles of nitrogen are there in 4.3×10^{23} molecules?

 $\frac{4.3 \times 10^{23} \text{ particles}}{6.02 \times 10^{23} \frac{\text{particles}}{\text{mol}}} = .714 \text{ mol}$

13. How many cadmium atoms are there in 6.57×10^3 moles?

 6.57×10^3 moles x (6.02 x $10^{23} \frac{particles}{mol}$) = 3.955×10^{27} particles

14. How many grams of SO₂ are 4.5×10^{24} molecules? Molar mass = $64.07 \frac{g}{mol}$ $\frac{4.5 \times 10^{24} \text{ particles}}{6.02 \times 10^{23} \frac{particles}{mol}} = 7.475 \text{ mol} \qquad 7.475 \text{ mol} \times 64.07 \frac{g}{mol} = \frac{478.93 \text{ g}}{mol}$

15. How many copper atoms are in 5.6 mole of Cu_2O_3 ?

5.6 mol x (6.02 x $10^{23} \frac{particles}{mol}$) = $\frac{3.37 \times 10^{24} \text{ particles}}{1000}$

16. How many grams of sulfur are in 3.45×10^{22} molecules of SO₂? Molar mass Sulfur = $32.07 \frac{g}{mol}$

 $\frac{3.45 \times 10^{22} \text{ particles}}{mol} = 0.0573 \text{ mol} \qquad 0.0573 \text{ mol} \times 32.07 \frac{g}{mol} = \frac{1.838 \text{ g}}{mol}$ $6.02 \times 10^{23} \frac{particles}{mol}$